Methane release and coastal environment in the East Siberian Arctic shelf
نویسندگان
چکیده
In this paper we present 2 years of data obtained during the late summer period (September 2003 and September 2004) for the East Siberian Arctic shelf (ESAS). According to our data, the surface layer of shelf water was supersaturated up to 2500% relative to the present average atmospheric methane content of 1.85 ppm, pointing to the rivers as a strong source of dissolved methane which comes from watersheds which are underlain with permafrost. Anomalously high concentrations (up to 154 nM or 4400% supersaturation) of dissolved methane in the bottom layer of shelf water at a few sites suggest that the bottom layer is somehow affected by near-bottom sources. The net flux of methane from this area of the East Siberian Arctic shelf can reach up to 13.7×10 g CH4 km −2 from plume areas during the period of ice free water, and thus is in the upper range of the estimated global marine methane release. Ongoing environmental change might affect the methane marine cycle since significant changes in the thermal regime of bottom sediments within a few sites were registered. Correlation between calculated methane storage within the water column and both integrated salinity values (r=0.61) and integrated values of dissolved inorganic carbon (DIC) (r=0.62) suggest that higher concentrations of dissolved methane were mostly derived from the marine environment, likely due to in-situ production or release from decaying submarine gas hydrates deposits. The calculated late summer potential methane emissions tend to vary from year to year, reflecting most likely the effect of changing hydrological and meteorological conditions (temperature, wind) on the ESAS rather than riverine export of dissolved methane. We point out additional sources of methane in this region such as submarine taliks, ice complex retreat, submarine permafrost itself and decaying gas hydrates deposits. © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf
The rates of subsea permafrost degradation and occurrence of gas-migration pathways are key factors controlling the East Siberian Arctic Shelf (ESAS) methane (CH4) emissions, yet these factors still require assessment. It is thought that after inundation, permafrost-degradation rates would decrease over time and submerged thaw-lake taliks would freeze; therefore, no CH4 release would occur for ...
متن کاملThe East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice
Sustained release of methane (CH(4)) to the atmosphere from thawing Arctic permafrost may be a positive and significant feedback to climate warming. Atmospheric venting of CH(4) from the East Siberian Arctic Shelf (ESAS) was recently reported to be on par with flux from the Arctic tundra; however, the future scale of these releases remains unclear. Here, based on results of our latest observati...
متن کاملUsing δC-CH4 and δD-CH4 to constrain Arctic methane emissions
We present a global methane modelling study assessing the sensitivity of Arctic atmospheric CH4 mole fractions, δC-CH4 and δD-CH4 to uncertainties in Arctic methane sources. Model simulations include methane tracers tagged by source and isotopic composition and are compared with atmospheric data at four northern high-latitude measurement sites. We find the model’s ability to capture the magnitu...
متن کاملIce export from the Laptev and East Siberian Sea derived from 18O values
Ice export from the vast Arctic Siberian shelf is calculated using dO values and salinity data for water samples collected during the International Siberian Shelf Study between August and September 2008 (ISSS-08). The samples represent a wide range of salinities and dO values due to river water inputs and sea ice removal. We estimate the fraction of water that has been removed as ice by interpr...
متن کاملIce-sheet-driven methane storage and release in the Arctic
It is established that late-twentieth and twenty-first century ocean warming has forced dissociation of gas hydrates with concomitant seabed methane release. However, recent dating of methane expulsion sites suggests that gas release has been ongoing over many millennia. Here we synthesize observations of ∼1,900 fluid escape features--pockmarks and active gas flares--across a previously glaciat...
متن کامل